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Resonance shift in relativistic traveling wave amplifiers
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We examine analytically the linear operation of relativistic traveling wave tube amplifiers. In this regime it
is found that the maximum growth rate occurs at a beam velocity below that expected on the basis of resonance
with the cold dispersion relation of the slow wave structure. The maximum growth rate can be much larger
than that at the resonance condition. These results have significance when extending Pierce’s theory to trav-
eling wave amplifiers driven by relativistic electron beams.

PACS number(s): 41.75.Ht, 03.50.De, 84.40.Fe

In recent years, there has been considerable interest in
high power (=100 MW) microwave sources employing rela-
tivistic electron beams [1,2]. These devices include klystrons
[2], traveling wave amplifiers (TWA’s) [3,4], free-electron
lasers [5], and various gyro devices [6]. All of these sources
operate on the principle of matching the longitudinal or
transverse velocity of electrons with the phase velocity of an
electromagnetic wave supported by the system. This interac-
tion results in spatial growth of electromagnetic power at the
expense of the kinetic energy of the electrons. However, the
behavior of these devices in the relativistic regime can differ
significantly from their counterparts in the nonrelativistic re-
gime.

In this Brief Report we report results from a study of
relativistic traveling wave amplifiers when operated off reso-
nance, i.e., when the dc beam velocity differs from the phase
velocity of the electromagnetic wave. It is shown that (i) in
the relativistic case, the electron velocity for which maxi-
mum spatial growth rate occurs may be substantially lower
than the wave phase velocity, i.e., off resonance. This is in
contrast to the nonrelativistic case where maximum growth
occurs at resonance. (ii) In the relativistic case the maximum
growth rate off resonance may be substantially larger than
that obtained at resonance. (iii) The interaction bandwidth of
a relativistic device may be significantly larger than that of a
nonrelativistic device. These characteristics are the result of
two competing processes which occur during the interaction.
First, the coupling coefficient, which is a measure of the
coupling between the electron beam and the wave propagat-
ing in the structure, varies as 1/8y and therefore increases as
the electron beam energy is reduced. Second, the slip be-
tween the wave and the electrons varies linearly with the
beam velocity and causes a decrease in the spatial growth
rate as one moves off resonance. In the relativistic case, sig-
nificant variations may occur in the coupling coefficient prior
to any substantial change in the slip since relatively small
variations in 8 may result in large changes in the coupling
coefficient. Consequently, the maximum growth occurs at
lower velocities than anticipated from the classical resonance
condition. In the nonrelativistic regime both parameters de-
pend on S only and the off resonance coupling effects are no
longer present.
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In this study, we concentrate on the variation of linear
growth rate with the beam velocity in a given traveling wave
amplifier operated at a single frequency. We use a simplified
model in which the slow wave structure consists of a cylin-
drical waveguide filled with a dielectric through which a
beam is launched. The model allows an analytic study of the
problem, and while not physically realizable, the model re-
tains the essential physics of the problem.

The axial electric field of a TM(; mode in a straight cir-
cular waveguide of radius a filled with material of dielectric
coefficient €, is given by

E,(r,z,t)=AyJ ok, r)el@ ko), 1)

where k, =v;/a and v;=2.405, the first zero of the Bessel
function Jy(x). The cold dispersion relation of the structure
is given by

2 (1)2 V%
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The dielectric coefficient €, is chosen such that electrons of
velocity Byc are synchronous with cold phase velocity
C()/ k 0-

When the waveguide is filled by a monoenergetic beam of
constant density # and dc velocity Bc, the dispersion relation
for small amplitude waves in the beam waveguide system
becomes

( i"—z—kz)(l— < ! —Vi 3)
re? e.€0(my) [Y(w—kv)]?|  a*

The beam current is given by I=nSBce, where the beam
cross section S is equal to the waveguide cross section
ma’.

Since we shall compare the operation of a relativistic sys-
tem with nonrelativistic systems, it is convenient to deter-
mine the parameters of our simplified model according to the
definitions introduced by Pierce [7]. Specifically, we quantify
the properties of this slow-wave system in terms of the
Pierce gain parameter C>. At resonance, the normalized spa-
tial growth rate is given by
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The interaction impedance measures the coupling strength
of the slow-wave structure and is defined as

1
§<Ef>s
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where (EZ)g is the square of the axial electric-field averaged
over the beam cross section S and P is the average power
flow in the waveguide. In the present case it is explicitly
given by

2
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where 77=377().

In order to make a meaningful comparison between rela-
tivistic and nonrelativistic regimes we have to make an ad-
equate choice of parameters in Eq. (3) above. There are four
parameters: w, a, €,, and the current /. The velocity of the
electrons is considered as a variable and the wave number
k is the quantity to be determined. Therefore the quantity we
shall examine is the normalized gain, defined as

_ Im(k)
a= ko 9)

In the discussion which follows, we shall consider a single
frequency, 9 GHz, at which we have three slow wave struc-
tures designed to be in resonance with beam energies of 1
MeV, 100 keV, and 10 keV, respectively. Consider first the
1 MV case. We shall examine three radii: a =20, 15, and
10 mm. The resonance condition is satisfied by setting
1 v%c2

€,= *B-g + m . (10)
for each one of the radii. For adequate comparison with the
other two cases (100 kV and 10 kV) we ensure that (i) the
normalized growth rate at resonance [calculated from disper-
sion relation (3)] is kept the same and (ii) the beam term
I/ B2 in the coupling parameter C is kept constant so that
when the first condition is satisfied, Z;,, is approximately the
same for each of the three cases. The second condition de-
termines the current and the former, combined with the re-
quirement for resonance, sets the radius and dielectric con-
stant for the 10 kV and 100 kV cases. There is a unique value

TABLE 1. Parameters at resonance: (w=kyB(c).

Vo Radius ¢ (mm) I, (A) ab g

1 MV 20 500 0.0295

100 kV 10.1 11.22 0.0290 0.0275
10 kV 2.65 0.88 0.0285

1 MV 15 500 0.0407

100 kV 7.46 11.22 0.0402 0.0385
10 kV 1.89 0.88 0.0395

1 MV 10 500 0.0613

100 kV 4.84 11.22 0.0605 0.0586
10 kV 1.15 0.88 0.0600

of (€, ,a) which satisfies the resonance condition as well as
the required value of « at resonance. The scaling results are
summarized in Table I.

Once the design of the slow-wave structure and the beam
current are set, the variation of growth rate with beam veloc-
ity is calculated using the exact solution of dispersion rela-
tion (3). The results are plotted in Fig. 1. We observe that for
the relativistic systems, the peak gain occurs when the beam
energy is significantly lower than the resonant beam energy.
Also, the maximum gain is significantly higher than at reso-
nance. This deviation becomes more pronounced as the cou-
pling strength is increased. To understand this behavior, we
see from (5) that the growth rate near resonance varies as
1/vB. As the beam velocity B is decreased below S, the
coupling strength increases as \'1 — 3%/8, which in the rela-
tivistic case compensates for the increasing slip factor
(w—kpBc). For the nonrelativistic case 7y is essentially con-
stant and the slight increase in coupling constant with de-
creasing S is overshadowed by the increasing slip when S
deviates from S,.

An additional insight into this process can be achieved by
examining the interaction in the frame of reference in which
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FIG. 1. Normalized growth rate a variation with beam velocity
B for 10 kV, 100 kV, and 1 MV systems. The solid curve represents
systems which have the value of growth rate at resonance
ay=5.86%; the dotted-dashed curve represents ay=3.85%; and the
dotted curve represents ag=2.75%. The vertical solid line indicates
Bo, the resonant value of 8. The dashed horizontal lines indicate
ay, the corresponding value of « at resonance.
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the average electron velocity is zero. For this purpose, we
use the Lorentz transformation of the (w,k) 4-vector into the
frame moving with velocity Bc. The transformed vector (de-
noted by a prime) reads

o' y(w— Bck)
= (1
k y(k— Bw/c)
of which the growing components read
' — Byckya
Im P yak, . (12)

Since we examined the spatial growth rate in the laboratory
frame in Fig. 1, it is natural now to ask how this quantity
varies when measured in the moving frame. We therefore
replot the data from Fig. 1 by graphing in Fig. 2 the product
ya as a function of B. It can be observed that the curves
have a similar shape for both relativistic and nonrelativistic
regimes and peaks very close to the classical resonance
B=w/ky. For example, in the 1 MV system described above
(ap=5.86%), a peaks at 300 kV, whereas ya peaks at 1.00
MY, i.e., at resonance. However, it should be noted that it is
« that determines the amount of beam power converted to
radiation and therefore this relativistic shift needs to be con-
sidered in the design of traveling wave amplifiers operating
in this regime. Thus when extending Pierce theory to travel-
ing wave tubes driven by relativistic beams it is essential to
remember that it is the quantity ya rather than « that peaks
at resonance.

In this Brief Report, we examined the linear operation of
relativistic and nonrelativistic traveling wave amplifiers. We
observed that (i) in the relativistic regime the maximum
growth rate does not occur at resonance but at a beam veloc-
ity lower than the phase velocity of the cold structure, (ii)
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FIG. 2. ya as a function of 8 for 10kV, 100 kV, and 1 MV
systems. The solid curve represents systems which have the value
of growth rate at resonance ay=5.86%; the dotted-dashed curve
represents a,=3.85%; and the dotted curve represents
ay=2.75%. The vertical solid line indicates B, the resonant value
of B. The dashed horizontal lines indicate «,, the corresponding
value of a at resonance.

this maximum growth rate can be much larger than the
growth rate at resonance, (iii) for both regimes it is the prod-
uct ya that peaks at resonance , and (iv) relativistic devices
are expected to be less sensitive to beam voltage fluctuations
than their nonrelativistic counterparts. This relative insensi-
tivity is expected to be significant, for example, in the design
of modulators used to produce the electron beams which
drive high power traveling wave amplifiers.
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